MANUAL DE SEGURIDAD

SH 3967 ES

Traducción de las instrucciones originales

Electroválvula Tipo 3967

Anotaciones y su significado

Aviso sobre peligros que provocan heridas graves o incluso la muerte

ADVERTENCIA

Aviso sobre peligros que pueden provocar heridas graves o incluso la muerte

Aviso sobre riesgo de daño material y de fallo de funcionamiento

i Información

Ampliación de información

☆ Consejo

Recomendaciones prácticas

Acerca de este manual

El manual de seguridad SH 3967 contiene información relevante acerca del uso de la electroválvula Tipo 3967 en sistemas instrumentados de seguridad según el estándar internacional EC 61508/IEC 61511. El manual de seguridad está dirigido a las personas que planifican, construyen y operan el sistema instrumentado de seguridad.

NOTA

¡Mal funcionamiento debido a un equipo instalado, conectado o puesto en marcha de forma incorrecta!

- → Consultar las instrucciones de montaje y servicio EB 3967 para montar, realizar las conexiones eléctricas y neumáticas y para la puesta en marcha del equipo.
- → ¡Prestar atención a las advertencias e indicaciones de seguridad de las instrucciones de montaje y servicio EB 3967!

Documentación adicional

En los documentos que se indican a continuación se encuentra una descripción detallada de la puesta en marcha, el funcionamiento y la operación de la electroválvula. Estos documentos se pueden descargar de la página de internet www.samsongroup.com.

► T 3967: Hoja técnica

► EB 3967: Instrucciones de montaje y servicio

i Información

Además de la documentación de la electroválvula, tener en cuenta los documentos del accionamiento neumático, la válvula y otros accesorios de la válvula.

Contenido

1	Campo de aplicación	5
1.1	Generalidades	
	Operación con placa de restricción (ejecución electroválvula con K _{VS} 0,32)	5
1.2	Uso en sistemas instrumentados de seguridad	
1.3	Ejecuciones y texto para pedidos	
	Código de producto	6
2	Montaje	8
3	Datos técnicos	9
4	Funciones de seguridad	13
	Desaireación segura	
4.1	Posición de seguridad	13
5	Montaje, conexión y puesta en marcha	15
6	Condiciones requeridas	16
6.1	Selección	
6.2	Instalación mecánica y neumática	16
6.3	Instalación eléctrica	17
7	Inspecciones periódicas	18
7.1	Inspección visual para evitar fallos sistemáticos	19
7.2	Prueba de funcionamiento	20
8	Reparación y mantenimiento	21
9	Datos y certificados de seguridad	22

1 Campo de aplicación

1.1 Generalidades

La electroválvula Tipo 3967 convierte una señal de tensión binaria en una señal de mando neumática. Se utiliza para controlar accionamientos neumáticos lineales y rotativos con resortes de retorno.

Operación con placa de restricción (ejecución electroválvula con K_{VS} 0,32)

La placa de restricción en la ejecución de electroválvula con K_{VS} 0,32 sirve para ajustar el tiempo de actuación de los accionamientos neumáticos. Es adecuada para el montaje en accionamientos lineales y rotativos con resorte de retorno. Su función de seguridad es la desaireación segura bajo demanda.

1.2 Uso en sistemas instrumentados de seguridad

La electroválvula cumple con la idoneidad sistemática como componente en lazos de seguridad para la desaireación segura en consideración de la IEC 61508.

La electroválvula se puede usar en aplicaciones hasta SIL 2 (aparato único/HFT = 0) y SIL 3 (conexión redundante/HFT = 1) en consideración de la IEC 61511 y de la tolerancia de fallos de Hardware.

Las funciones de seguridad individuales de la electroválvula deben considerarse elementos tipo A según IEC 61508-2.

1.3 Ejecuciones y texto para pedidos

Todas las ejecuciones de la electroválvula marcadas con el prefijo **SIL** son adecuadas para su uso en sistemas instrumentados de seguridad. El código de producto de la placa de características (ver código de producto en pág. 6) proporciona información acerca del equipamiento opcional de la electroválvula.

Operación con placa de restricción (ejecución electroválvula con K_{VS} 0,32)

En los sistemas instrumentados de seguridad solo se pueden utilizar placas de restricción con marcado **SIL**. En estas placas de restricción se excluye, por diseño, el cierre completo de la sección de flujo.

Campo de aplicación

Código de producto

Electroválvula	Tipo	3967-	х	х	х	х	хх	K	X	х	х	х	х	х	х	х	х	x :	x)	C X	×
Protección Ex			Т	Т	Т	Т	Т					П	Т	Т	Т	Т	Τ	Τ	Π		
Sin protección I	х	SIL	0	0	0																
ATEX	II 2G Ex ia IIC T6 Gb, II 2D Ex ia IIIC T80°C Db	SIL	1	1	0																
NEPSI	Ex ia IIC T4~T6 Gb,	SIL																			
IECEx	Ex ia IIC T6T4 Gb,		1	1	2																
EAC	1Ex ia IIC T6T4 Gb, Ex ia IIIC T80 °C Db				3																
TR CMU 1055	II 2G Ex ia IIC T6T4 Gb, II 2D Ex ia IIIC T80 °C Db	SIL	1	1	6																
ATEX	II 3G Ex nA II T6, II 3G Ex ic IIC T6, II 3D Ex tc IIIC T80°C IP65	SIL			0																
IECEx	Ex nA II T6, Ex nL IIC T6, Ex tD A22 IP65 T80°C	SIL			2																
EAC	2Ex nA IIC T6T4 Gc X, 2Ex ic IIC T6T4 Gc, Ex tc IIIC T80 °C Dc		8	1	3																
TR CMU 1055	II 3G Ex nA II T6 Gc,	SIL																			
Señal nominal		,																			
6 V DC					SIL	1															
12 V DC					SIL																
24 V DC					SIL	3	1				_		_	4	1		1	_			
Accionamiento																					
Pulsador debajo de la tapa de la carcasa						SIL	_														
	apa de la carcasa						1														
Conmutador en la tapa de la carcasa						CII	2														
Sin						SIL	3				_		\dashv	+	+	+	+	+	\vdash		
Función de con																					
3/2-vias con re	sorte de retorno					5	SIL () ()										1		

Electroválvula	Тіро 3967- х х х х	x x x x	хх	х	x)	(X	х	x z	κх	х	x :
Montaje											
Configuración de agujeros NA	AMUR ¼" según VDI/VDE 3845	SIL 0									
para accionamientos rotativos		JIL U									
Puente NAMUR según IEC 605		SIL 2									
•	o montaje en panel, pared o raíl	V									
Bloque de conexión con posici		SIL 3									
para accionamientos lineales S											
Contiguración de agujeros NA para accionamientos rotativos	MUR ½" según VDI/VDE 3845	SIL 4									
Valor de K _{vs} 1)			+	+			+	+			
0,32		SIL									
2,0		SIL	-								
4.3		SIL	_								
Material		JIL	4	-				+	\vdash		
Poliamida y aluminio, con recu	ubrimiente eneve		SIL 1								
Poliamida y acero inoxidable	ъппиено ероху		SIL 1	.							
Conexión neumática			JIL Z	+			-	+	\vdash		
	on alasa adamtadora o blosuo do	aamawián)	CII	l L 0							
G 1/4	en placa adaptadora o bloque de	conexion		L 0							
1/4 NPT				L 1							
G ½				L 2							
½ NPT				L 3							
Conexión válvula piloto			311	_ 4	+		+	+			
	en placa adaptadora, amplificado	r o bloguo de									
conexión)	an piaca adapidaora, ampinicado	i o bioque de	,	SIL	0						
1 x G ¼ o ¼ NPT (con condu	cción interna de la energía auxilia	ır)		SIL	1						
	cción externa de la energía auxilia			SIL	2						
Sin (con placa ciega – conexió	ón en placa adaptadora, amplifica	idor o bloque		CII	,						
de conexión)				SIL	4						
Energía auxiliar											
Conducción interna a través de	e la conexión 1 (para accionamie	ntos todo/nac	da)	:	SIL	0					
Conducción externa a través d	le la conexión 9 (para accionamie	ntos de regul	ación		SIL	,					
o bloque de conexión con posi	icionador)				JIL		_	_	Ш		
Conexión eléctrica											
Sin racor para cables					S	IL C	0				
Racor para cables M16 x 1,5					_	IL C					
Racor para cables M16 x 1,5	•				S	IL 1	1				
	de poliamida, negro (marca CEA)	G)			S	IL 1	3				
Racor para cables M16 x 1,5						IL 1					
Racor para cables M16 x 1,5	de latón, azul				S	IL 1	5	\perp		\Box	\perp
Tipo de protección											
IP 65							SIL	0	1		

Montaje

Electroválvula	Tipo 3967-	х	х	x	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Temperatura ambiente 2)																						
−20+80 °C																	SIL	0				
−45+80 °C																	SIL	1				
Función de seguridad																						
Sin																			0			
SIL ³⁾ y PL																		SIL	1			
Ejecución especial																						
Sin																			SIL	. 0	0	0

- $^{1)}$ El caudal de aire para p $_1$ = 2,4 bar y p $_2$ = 1,0 bar se puede calcular con la siguiente fórmula: Q = $K_{VS} \times 36,22$ en $m^3/h.$
- 21 La temperatura ambiente máxima admisible depende de la temperatura ambiente admisible del racor para cables, de la protección Ex y de la clase de temperatura.
- 3) Nivel de integridad de la seguridad SIL según IEC 61508, ver cap. 9

Placas de restricción adecuadas para aplicaciones SIL

Accesorios para l	K _{VS} 0,32
Núm. referencia	Denominación
100087311	Con restricción de desaireación y placa de protección, K _{VS} 0,002 a 0,27, ajustable; de aluminio, con recubrimiento tipo Ematal SIL
1402-0141	Con restricción de desaireación y tuerca de bloqueo, K _{VS} 0,01 a 0,28, ajustable; de aluminio, con recubrimiento epoxy, gris-beige SIL
1402-0142	Con restricción de desaireación y tuerca de bloqueo, K _{VS} 0,01 a 0,28, ajustable; de acero inoxidable 1.4404 SIL
100084935	Con restricción de alimentación y placa de protección, K _{VS} 0,002 a 0,27, ajustable; de aluminio, con recubrimiento tipo Ematal SIL
1402-0139	Con restricción de alimentación y tuerca de bloqueo, K _{VS} 0,01 a 0,28, ajustable; de aluminio, con recubrimiento epoxy, gris-beige SIL
1402-0140	Con restricción de alimentación y tuerca de bloqueo, K _{VS} 0,01 a 0,28, ajustable; de acero inoxidable 1.4404 SIL

2 Montaje

La electroválvula es adecuada para los siguientes montajes cuando se combina con diversas piezas de montaje:

- Montaje a accionamiento rotativo con interfaz NAMUR según VDI/VDE 3845
- Montaje a accionamiento lineal con puente NAMUR según IEC 60534-6-1
- Montaje integrado con bloque de conexión en el accionamiento lineal SAMSON Tipo 3277
- Montaje en tubo
- Montaje en panel, pared o raíl

3 Datos técnicos

Electroválvula Tipo 3967-x	xxxxxxx0 (K _{vs} 0,32) 1)							
Función de conmutación	3/2-vías con retroalimentación de la desaireación, accionamiento simple							
K _{VS} ²⁾	0,32							
Función de seguridad	SIL ³⁾ y PL							
Construcción	Solenoide con sistema tobera-placa deflectora y válvula de asiento-obturador con							
	esorte de retorno							
Material	Carcasa: Poliamida, negra							
	Placa de Aluminio, con recubrimiento epoxy, negra, o acero inoxidable							
	conexiones: 1.4404							
	Placa adaptadora: Aluminio, con recubrimiento epoxy, gris-beige RAL 1019 o acero inoxidable 1.4404							
	Tornillos: Acero inoxidable A2-70							
	Resortes: Acero inoxidable 1.4310							
	Juntas: Caucho de silicona							
Energía auxiliar	Aire de instrumentación (exento de componentes corrosivos) o nitrógeno							
Presión energía auxiliar	1,410,0 bar ^{4]} ,							
$1,46,0$ bar $^{5)}$ (con presión de servicio $06,0$ bar) $^{5)}$,								
	1,910,0 bar ⁴⁾ (con presión de servicio 010,0 bar) ⁵⁾							
Medio de trabajo	Aire de instrumentación (exento de componentes corrosivos) o nitrógeno 4),							
	Aire de instrumentación (exento de componentes corrosivos), aire lubrificado, o gases no corrosivos ⁵⁾							
Calidad del aire	Tamaño y densidad de partícula clase 4,							
según ISO 8573-1	Contenido de aceite clase 3,							
	Presión de rocío clase 3 o como mínimo 10 K por debajo de la menor temperatura ambiente posible							
Presión de servicio	1,410,0 bar ³⁾ , máx. 10,0 bar ⁵⁾							
Señal de salida	Presión de servicio							
Consumo de aire	≤25 nl/h con 1,4 bar de energía auxiliar (accionada),							
(convertidor e/p)	≤80 nl/h con 1,4 bar de energia auxiliar (sin accionar)							
Tiempo de conmutación	65 ms							
Conexión eléctrica	Bornes roscados, 2-pin, con racor para cables M16 x 1,5							
Conexión neumática	G 1/4 o 1/4 NPT y configuración de agujeros NAMUR 1/4" 6)							
Tipo de protección	IP 65							
Temperatura ambiente 7)	-20+80 °C; -45+80 °C							
Peso	0,45 kg; con placa adaptadora: 0,80 kg							
	1.4 - 04 - 1 - 1 - 1 - 1 - 1 - 1 - 1							

¹⁾ La ejecución de electroválvula K_{VS} 0,32 se puede equipar con una placa de restricción para ajustar los tiempos de posicionamiento del accionamiento neumático.

- 3) Nivel de integridad de la seguridad SIL según IEC 61508 (Núm. de certificado V 60.09/14).
- 4) En caso de conducción interna de la energía auxiliar.
- 5) En caso de conducción externa de la energía auxiliar.
- 6) Configuración de agujeros NAMUR según VDI/VDE 3845.
- 7) La temperatura ambiente máxima admisible depende de la temperatura ambiente admisible del racor para cables, de la protección Ex y de la clase de temperatura.

²⁾ El caudal de aire para $p_1=2.4$ bar y $p_2=1.0$ bar se puede calcular con la siguiente fórmula: $Q=K_{VS}\times36,22$ en m^3/h .

Datos técnicos

Electroválvula Tipo 3967-xx	xxxxxx2 (K _{vs} 2,0)							
Función de conmutación	3/2-vías con retroc	alimentación de la desaireación, accionamiento simple						
K _{VS} 1) (en sentido circulación)	$2,0 (3 \rightarrow 5), 1,1 (4)$	$2,0 (3 \rightarrow 5), 1,1 (4 \rightarrow 3)$						
Función de seguridad	SIL ²⁾	SIL ²⁾						
Construcción	Solenoide con siste resorte de retorno	olenoide con sistema tobera-placa deflectora y válvula de asiento-obturador con esorte de retorno						
Material	Carcasa:	Poliamida, negra, aluminio, con recubrimiento epoxy, gris-beige RAL 1019, o acero inoxidable 1.4404						
	Placa de conexiones:	Aluminio, con recubrimiento epoxy, negra, o acero inoxidable 1.4404						
	Placa adaptadora:	Aluminio, con recubrimiento epoxy, gris-beige RAL 1019 o acero inoxidable 1.4404						
	Tornillos:	Acero inoxidable A2-70						
	Resortes:	Acero inoxidable 1.4310						
	Juntas:	Clorobutadieno (-20+80 °C), caucho de silicona (-45+80 °C)						
	Membrana:	Clorobutadieno (-20+80 °C), caucho de silicona (-45+80 °C)						
Energía auxiliar	Aire de instrumentación (exento de componentes corrosivos) o nitrógeno							
Presión energía auxiliar	1,410,0 bar ³⁾ , 1,46,0 bar ⁴⁾ (con presión de servicio 06,0 bar), 1,910,0 bar ⁴⁾ (con presión de servicio 010,0 bar)							
Medio de trabajo		ación (exento de componentes corrosivos) o nitrógeno ³¹ , ación (exento de componentes corrosivos), aire lubrificado, o gases						
Calidad del aire según ISO 8573-1	Contenido de aceit	l de partícula clase 4, e clase 3, use 3 o como mínimo 10 K por debajo de la menor temperatura am-						
Presión de servicio	Máx. 10,0 bar							
Señal de salida	Presión de servicio							
Consumo de aire (convertidor e/p)		oar de energía auxiliar (accionada), oar de energía auxiliar (sin accionar)						
Tiempo de conmutación	65 ms							
Conexión eléctrica	Bornes roscados, 2	-pin, con racor para cables M16 x 1,5						
Conexión neumática	Alimentación: Desaireación:	G ¼ o ¼ NPT y configuración de agujeros NAMUR ¼" 5 l con G % G ½ o ½ NPT y configuración de agujeros NAMUR ¼" 5 l con G %						
Tipo de protección	IP 65							
Temperatura ambiente 6)	-20+80 °C; -45.	+80 °C						
Peso	1,65 kg; con placa	adaptadora: 1,95 kg						

El caudal de aire para $p_1=2.4$ bar y $p_2=1.0$ bar se puede calcular con la siguiente fórmula: $Q=K_{VS}\times 36.22$ en m^3/h .

- 2) Nivel de integridad de la seguridad SIL según IEC 61508 (Núm. de certificado V 60.09/14).
- 3) En caso de conducción interna de la energía auxiliar.
- 4) En caso de conducción externa de la energía auxiliar.
- 5) Configuración de agujeros NAMUR según VDI/VDE 3845.

⁶⁾ La temperatura ambiente máxima admisible depende de la temperatura ambiente admisible del racor para cables, de la protección Ex y de la clase de temperatura.

Electroválvula Tipo 3967-xxx	xxxxx4 (K _{vs} 4,3)								
Función de conmutación	3/2-vías con ret	roalimentación de la desaireación, accionamiento simple							
K _{VS} 1) (en sentido circulación)	$4,3 (3 \rightarrow 5), 1,$	$4,3 (3 \rightarrow 5), 1,9 (4 \rightarrow 3)$							
Función de seguridad	SIL ²⁾	SIL ²⁾							
Construcción	Solenoide con si sorte de retorno	olenoide con sistema tobera-placa deflectora y válvula de asiento-obturador con re- orte de retorno							
Material	Carcasa:	Poliamida, negra, aluminio, con recubrimiento epoxy, gris-beige RAL 1019, o acero inoxidable 1.4404							
	Placa de conexiones:	Aluminio, con recubrimiento epoxy, negra, o acero inoxidable 1.4404							
	Placa adaptadora:	Aluminio, con recubrimiento epoxy, gris-beige RAL 1019 o acero inoxidable 1.4404							
	Tornillos:	Acero inoxidable A2-70							
	Resortes:	Acero inoxidable 1.4310							
	Juntas:	Clorobutadieno (-20+80 °C), caucho de silicona (-45+80 °C)							
	Membrana:	Clorobutadieno (-20+80 °C), caucho de silicona (-45+80 °C)							
Energía auxiliar	Aire de instrume	Aire de instrumentación (exento de componentes corrosivos) o nitrógeno							
Presión energía auxiliar	1,410,0 bar ³⁾ , 1,46,0 bar ⁴⁾ (con presión de servicio 06,0 bar) ⁴⁾ , 1,910,0 bar ⁴⁾ (con presión de servicio 010,0 bar) ⁴⁾								
Medio de trabajo		entación (exento de componentes corrosivos) o nitrógeno ³⁾ , entación (exento de componentes corrosivos), aire lubrificado, o gases							
Calidad del aire		dad de partícula clase 4,							
según ISO 8573-1	contenido de ac presión de rocío ambiente posible	clase 3 o como mínimo 10 K por debajo de la menor temperatura							
Presión de servicio	Máx. 10,0 bar								
Señal de salida	Presión de servi	cio							
Consumo de aire (convertidor e/p)		4 bar de energía auxiliar (accionada), 4 bar de energía auxiliar (sin accionar)							
Tiempo de conmutación	65 ms								
Conexión eléctrica		, 2-pin, con racor para cables M16 x 1,5							
Conexión neumática	G ½ o ½ NPT y	configuración de agujeros NAMUR ½" ⁵⁾							
Tipo de protección	IP 65								
Temperatura ambiente 6)	−20+80 °C; −	45+80 °C							
Peso	1,6 kg; con plac	1,6 kg; con placa adaptadora: 1,9 kg							

¹⁾ El caudal de aire para $p_1=2.4$ bar y $p_2=1.0$ bar se puede calcular con la siguiente fórmula: $Q=K_{VS}\times36.22$ en m³/h.

- 2) Nivel de integridad de la seguridad SIL según IEC 61508 (Núm. de certificado V 60.09/14).
- 3) En caso de conducción interna de la energía auxiliar.
- 4) En caso de conducción externa de la energía auxiliar.
- 5) Configuración de agujeros NAMUR según VDI/VDE 3845.
- 6) La temperatura ambiente máxima admisible depende de la temperatura ambiente admisible del racor para cables, de la protección Ex y de la clase de temperatura.

Datos técnicos

Datos eléctricos					
Tipo 3967			-xxx1	-xxx2	-xxx3
Señal nominal		U _N	6 V DC	12 V DC	24 V DC
		U _{máx} 1)	27 V	40 V	60 V
Punto de	On	U _{+80 °C}	≥4,8 V	≥9,6 V	≥18 V
conmutación		P _{+20 °C}	≥5,47 mW	≥13,05 mW	≥26,71 mW
	Off	U _{-25 °C}	≤1,0 V	≤2,3 V	≤4,6 V
Impedancia		R _{+20 °C}	2,6 kΩ	5,3 kΩ	10,5 kΩ
Influencia de la temperatura en R			0,4 %/°C	0,2 %/°C	0,1 %/°C
Protección Ex id	IIC 2)/E	x ia IIIC ³⁾			
Tipo 3967			-1101	-1102	-1103
Señal nominal		U _N	6 V DC	12 V DC	24 V DC
			CE PTB 06 ATEX 2027 se e ente seguro certificado.	ncuentran los valores máxin	nos permitidos para la
Protección Ex n	A II 4)/Ex	c tc IIIC 5)			
Tipo 3967			-8101	-8102	-8103
Señal nominal		U _N	6 V DC	12 V DC	24 V DC
			PTB 06 ATEX 2028 X se enc ente seguro certificado.	uentran los valores máximo	s permitidos para la

¹⁾ Valor máximo admisible para un ciclo de trabajo 100 %. Para ejecuciones Ex es válido el valor máximo admisible U_i.

²⁾ Marcado II 2G Ex ia IIC T6 Gb

³⁾ Marcado II 2D Ex ia IIIC T80°C Db

⁴⁾ Marcado II 3G Ex nA II T6/II 3G Ex ic IIC T6

⁵⁾ Marcado II 3D Ex tc IIIC T80°C IP65

4 Funciones de seguridad

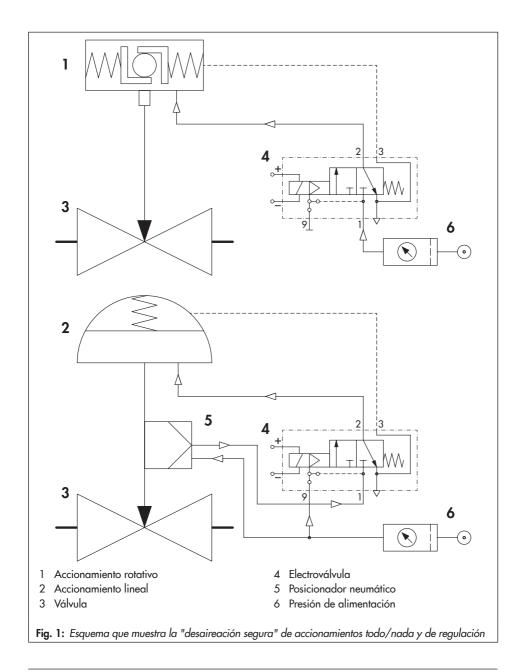
Desaireación segura

La electroválvula está energizada con una señal de tensión binaria. La función de seguridad se activa cuando no se aplica tensión (0 V DC) en los bornes + y -. La electroválvula desairea a la atmosfera, igual que el accionamiento (ver Fig. 1, pág. 14).

Función de restricción (operación con placa de restricción en la ejecución de electroválvula con K_{VS} 0,32)

La placa de restricción se compone de una restricción ajustable manualmente en la alimentación o en la desaireación y una válvula antirretorno conectada en paralelo. Según la ejecución de la placa de restricción se limita la alimentación o la desaireación del accionamiento.

4.1 Posición de seguridad


La posición de seguridad se activa por la electroválvula y en caso de fallo de la energía auxiliar neumática.

La electroválvula desairea completamente su salia neumática a la atmosfera y con ello el accionamiento neumático. Como consecuencia la válvula va a su posición de seguridad. La posición de seguridad depende de los resortes en el accionamiento neumático, pueden "cerrar" o "abrir" la válvula.

Función de restricción (operación con placa de restricción en la ejecución de electroválvula con K_{vs} 0,32)

La placa de restricción está diseñada para garantizar la desaireación del accionamiento bajo demanda (la construcción impide la permanencia del aire de alimentación en el accionamiento).

Una válvula antirretorno conectada en paralelo garantiza la desaireación en la placa de restricción con restricción del aire de alimentación. En la placa de restricción con restricción de la desaireación, el eje de restricción garantiza un caudal de aire mínimo y como resultado evita el bloqueo. Esto es así, incluso cuando el eje de restricción está completamente enroscado.

5 Montaje, conexión y puesta en marcha

En las instrucciones de montaje y servicio ▶ EB 3967 se describe cómo montar, realizar las conexiones eléctricas y neumáticas, así como la puesta en marcha de la electroválvula. Utilizar únicamente componentes y accesorios originales.

6 Condiciones requeridas

A ADVERTENCIA

¡Fallo de funcionamiento debido una mala selección o a la instalación y condiciones de operación incorrectas!

→ Utilizar las válvulas de control en sistemas instrumentados de seguridad solo cuando se cumplan las condiciones requeridas. ¡Lo mismo aplica a la electroválvula montada!

6.1 Selección

- → ¡Se cumplen los tiempos de posicionamiento requeridos de la válvula! Los tiempos de posicionamiento a implementar vienen determinados por los requerimientos técnicos del proceso.
 - Con la ejecución de electroválvula con K_{VS} 0,32 se puede reducir la velocidad de posicionamiento del accionamiento utilizando una placa de restricción.
- → La electroválvula es adecuada para la temperatura ambiente prevalente.

Ejecuciones	Margen de temperatura						
Con membrana y juntas de clorobutadieno	−20+80 °C						
Con membrana y juntas de caucho de silicona	−45+80 °C						
Con racor para cables de plástico	−20+80 °C						
Con racor para cables metálico -45+80 °C							
Para los equipos Ex indicaciones adicionales en el Certificado de prueba de tipo.							

- → ¡Se observan las limitaciones de temperatura!
- → En la operación con placa de restricción, se utilizará una placa de restricción conforme SIL.

6.2 Instalación mecánica y neumática

- → La electroválvula se ha montado correctamente de acuerdo con las instrucciones de montaje y servicio, y se ha conectado la alimentación neumática.
- → ¡No superar la presión máxima de alimentación de 10,0 bar!
- → La energía auxiliar neumática cumple con las especificaciones del aire de instrumentación.

Tamaño y número de partículas	Contenido de aceite	Punto de rocío
Clase 4	Clase 3	Clase 3
≤5 µm y 1000/m³	≤1 mg/m³	-20 °C o como mínimo 10 K por debajo de la menor temperatura ambiente posible

Consejo

SAMSON recomienda instalar un filtro/regulador antes del equipo.

Por ejemplo se puede utilizar la unidad de preparación del aire Tipo 3999-009x o el filtro regulador Tipo 3999-0096.

- → Tener en cuenta las secciones mínimas de tubería de conexión de 4 mm de diámetro interno (energía auxiliar 9) y 9 mm de diámetro interno (alimentación 1 y salida 2).
 Ver "Dimensionado de la tubería de conexión" en las instrucciones de montaje y servicio
 ► FB. 3967
- → La sección y longitud de la tubería de conexión se debe elegir de forma que la presión mínima de alimentación en el equipo supere los 1,4 (1,9) bar cuando se llene de aire.
- → ¡Respetar la posición de montaje prevista de la electroválvula!
- → ¡La apertura para desaireación de la electroválvula no queda obstruida en la posición de montaje!

Operación con placa de restricción (ejecución electroválvula con K_{VS} 0,32)

→ La placa de restricción se ha montado correctamente de acuerdo con las instrucciones de montaje y servicio.

6.3 Instalación eléctrica

- → La electroválvula se ha montado correctamente de acuerdo con las instrucciones de montaje y servicio, y se ha conectado la alimentación eléctrica.
- → ¡Solo se utilizan cables cuyos diámetros exteriores son adecuados para los racores disponibles!
- → Los cables eléctricos de los circuitos Ex i cumplen con los valores utilizados en la planificación!
- → Los racores y los tornillos de la tapa de la carcasa están bien apretados para que se cumpla la protección contra explosión.
- → Se cumplen los requerimientos de instalación de las medidas de protección contra explosión aplicables.
- → Se cumplen las condiciones especiales de los certificados Ex.

7 Inspecciones periódicas

El intervalo y el alcance de las inspecciones periódicas son responsabilidad del responsable de la planta. El responsable deberá elaborar un plan de inspección, donde se incluyan las pruebas y los intervalos de prueba periódicos. Los requisitos de las inspecciones periódicas deben resumirse en forma de lista de control.

ADVERTENCIA

¡Riesgo de fallo peligroso por un mal funcionamiento en caso de demanda (accionamiento y/o válvula no va a la posición de seguridad)!

→ En los sistemas instrumentados de seguridad se deben utilizar únicamente equipos que hayan superado las pruebas periódicas conforme el plan de inspección elaborado por el responsable.

Comprobar a intervalos regulares la función de seguridad de todo el sistema instrumentado de seguridad. Los intervalos de inspección se determinan, entre otras cosas, al calcular cada circuito instrumentado de seguridad individual de un planta (PFD_{ava}).

7.1 Inspección visual para evitar fallos sistemáticos

Es necesario realizar inspecciones visuales periódicas de la electroválvula para evitar fallos sistemáticos. El responsable de la planta es el encargado de determinar la frecuencia y el alcance de las pruebas. En particular, deben tenerse en cuenta las condiciones específicas de cada aplicación:

- Suciedad que pueda bloquear las conexiones neumáticas
- Corrosión (destrucción de materiales, principalmente metálicos, debido a procesos físico-químicos)
- Fatiga del material
- Envejecimiento (daños debidos al efecto de la luz y el calor en los materiales orgánicos, por ejemplo, plásticos y elastómeros)
- Ataque químico (procesos de hinchamiento, extracción y descomposición desencadenados por sustancia químicas en materiales orgánicos como plásticos y elastómeros)

NOTA

¡Fallo de funcionamiento debido al uso de componentes no permitidos!

→ Sustituir las piezas desgastadas únicamente por piezas originales.

Operación con placa de restricción (ejecución electroválvula con K_{VS} 0,32)

→ Comprobar que la tuerca de bloqueo o placa de protección estén bien montadas.

7.2 Prueba de funcionamiento

La función de seguridad se deberá comprobar de forma periódica de acuerdo con el plan de inspección elaborado por el responsable.

En caso de desviaciones significativas y de cualquier otra irregularidad, se deberá llevar a cabo la prueba recurrente de funcionamiento SIL de la electroválvula. SAMSON proporciona la documentación necesaria para esta prueba.

En caso de solicitarlo SAMSON puede llevar a cabo la prueba recurrente SIL.

i Información

Los fallos en el equipo se deberán registrar y notificar a SAMSON por escrito.

- → Cuando la energía auxiliar se conduce internamente se deberá aplicar a la conexión 1 la presión de servicio admisible de 1,4 a 10,0 bar.

 Cuando la energía auxiliar se conduce externamente, se deberá aplicar a la conexión 1 la presión de servicio máxima 10,0 bar o la presión de servicio máxima disponible.

 Cuando se utilice un posicionador previo, este se deberá ajustar para que la presión de salida máxima esté disponible a la salida del posicionador.
- → Aplicar a la electroválvula la tensión nominal U_N especificada en la placa de características
- → Comprobar que la válvula se mueve a la posición final bajo demanda.
- → Desenergizar la electroválvula.

Comprobar si el accionamiento desairea completamente en el tiempo requerido (posición de seguridad).

-\(\tilde{\pi}\) Conseio

Para comprobar que el accionamiento desairea completamente conectar un manómetro.

→ Registrar el tiempo de recorrido de la válvula y compararlo con los tiempos de recorrido de la válvula registrados durante la puesta en marcha y durante otras pruebas anteriores.

Prueba de verificación (Proof-Test)

Como prueba se debe realizar una prueba de carrera completa. Para calcular el PFD_{avg} se puede utilizar el siguiente valor para la cobertura de la prueba (Proof Test Coverage):

PTC (Proof Test Coverage) = 95 % para una prueba

8 Reparación y mantenimiento

En la electroválvula solo se pueden realizar los trabajos descritos en ► EB 3967 Solo se pueden utilizar los componentes originales indicados.

NOTA

¡Deterioro de la función de seguridad debido a una reparación incorrecta!

→ Los trabajos de mantenimiento y reparación los debe llevar a cabo únicamente personal entrenado

El organismo TÜV Rheinland[®] certifica una vida útil de 11 años más un periodo de almacenamiento de 1,5 años desde la fecha de fabricación para los equipos que funcionan en el modo de baja demanda (LDM), siempre que se cumplan las condiciones para el funcionamiento de los equipos descritas en el manual de seguridad y en las instrucciones de montaje y servicio.

Deben evaluarse los resultados de las pruebas recurrentes y en función de ello, planificar el mantenimiento si es necesario. Especialmente, cuando se observe algún cambio (p. ej. signos de envejecimiento en los elastómeros, cambios en los tiempos de conmutación o fugas, etc.) es esencial que el fabricante realice las tareas de mantenimiento o reparación oportunas.

MTC (Maintenance Coverage) > 99 %

9 Datos y certificados de seguridad

Los datos importantes relativos a la seguridad se encuentran en el siguiente certificado.

i Información

Los datos de seguridad indicados también son válidos para la ejecución de electroválvula con K_{VS} 0,32 con placa de restricción y tuerca de bloqueo.

Los datos de seguridad cuando se utilice una placa de restricción con placa de protección están disponibles sobre demanda.

No.: 968/V 1160.02/21

Product tested

Type designation

Electromagnetic control, solenoid, booster valves and electrical position feedback Certificate holder SAMSON AG Weismüllerstr. 3

60314 Frankfurt / Main Germany

3963, 3967, 3964, 3756, 3701, 3968,

3776 (with option solenoid valve as well as safe indication of end positions)

Codes and standards IEC 61508 Parts 1-2 and 4-7:2010

Intended application Safety Function: Safe venting (and safe indication of end positions)

The test items are suitable for use in a safety instrumented system up to SIL 2 (low demand mode).

SIL 2 (low demand mode).

Under consideration of the minimum required hardware fault tolerance HFT = 1 the valves may be used in a redundant architecture up to SIL 3 according to IEC 61508 and IEC 61511-1:2016 + AMD1:2017.

lien & Grid

Specific requirements The instructions of the associated Installation, Operating and Safety

Manual shall be considered.

Summary of test results see back side of this certificate.

The issue of this certificate is based upon an evaluation in accordance with the Certification Program CERT FSP1 V1.021017 in its actual version, whose results are documented in Report No. 968/V 1160.02/21 dated 2021-09-08. This certificate is valid only for products, which are identical with the product tested.

TÜV Rheinland Industrie Service GmbH Bereich Automation

Funktionale Sicherheit

Dipl. Ing. (FH) Wolf Rückwart

www.fs-products.com www.tuv.com

Köln, 2021-09-13

10/2211 11E A4 @ TOV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approved

TÜV Rheinfand hidustrie Service GmbH, Am Grauen Stein, 81108 Küh / Germany Tel.: +49.221 806-1790, Fex: +49.221 806-1839, E-Mait Industrie service@do.tuv.com

Holder: SAMSON AG

Weismüllerstraße 3 60314 Frankfurt am Main

Germany

Product tested: Electromagnetic control, solenoid and booster

valves of the types

3963, 3967, 3964, 3756, 3701, 3968 ⁴,

3776 (with option "solenoid valve" as well as "safe

indication of end positions")

Results of Assessment

Route of Assessment	2 _H / 1 ₈
Type of Sub-system	Type A
Mode of Operation	Low Demand Mode

Safe venting - Type 3701, 3963, 3967, 3776 (with option solenoid valve)

Hardware Fault Tolerance	HFT	0	
Lambda Dangerous Undetected ¹	λ _{DU}	8.02 E-08 / h	80 FIT
Average Probability of Failure on Demand 2	PFD _{avg} (T ₁)	3.51 E-04	

Safe indication of end positions - Type 3776 (only with inductive proximity switches)

Hardware Fault Tolerance	HFT	0	
Lambda Dangerous Undetected ¹	λ _{DU}	7.35 E-08 / h	74 FIT
Average Probability of Failure on Demand 2	PFD _{avn} (T ₁)	3.22 E-04	

Safe venting - Type 3756

oute venting Type or or			
Hardware Fault Tolerance	HFT	0 (1 as variant, see report)	
Lambda Dangerous Undetected 1	λ _{DU}	8.38 E-08 / h	84 FIT
Average Probability of Failure on Demand ²	PFD _{avg} (T ₁)	3.67 E-04	
Average Probability of Failure on Demand 1002 8	PFD _{avg} (T ₁)	3.69 E-05	

Safe venting - Type 3964 pilot valve

oute venting - Type 0004 phot varve			
Hardware Fault Tolerance	HFT	0	
Lambda Dangerous Undetected 1	λ _{DU}	5.12 E-09 / h	5 FIT
Average Probability of Failure on Demand 2	PFD _{vvr} (T ₄)	2.24 E-05	$\overline{}$

assumed Diagnostic Coverage DC = 0 %

Origin of values

The stated failure rates are the result of an FMEDA with tailored failure rates for the design and manufacturing process.

Furthermore the results have been verified by qualification tests and field-feedback data of the last 5 years.

Failure rates include failures that occur at a random point in time and are due to degradation mechanisms such as

The stated failure rates do not release the end-user from collecting and evaluating application-specific reliability data.

Systematic Capability

The development and manufacturing process and the functional safety management applied by the manufacturer in the relevant lifecycle phases of the product have been audited and assessed as suitable for the manufacturing of products for use in applications with a maximum Safety Integrity Level of 3 (SC 3).

Periodic Tests and Maintenance

The given values require periodic tests and maintenance as described in the Safety Manual.

The operator is responsible for the consideration of specific external conditions (e.g. ensuring of required quality of media, max. temperature, time of impact), and adequate test cycles.

TÜV Rheinland Industrie Service GmbH, Am Grauen Stein, 51105 Köln / Germany

² assumed Proof Test Interval T₁ = 1 year

 $^{^3}$ assumed Proof Test Interval T_1 = 1 year and β_{1002} = 10 %

⁴ The solenoid valve manifold of type 3988 is a combination of the control valves 3756 and the pilot valves 3964. The failure rates must be determined for each individual application from the given characteristic values of the single components.

